Appendix 3

Workshop proceedings Project code: 2017IE08

Capacity Building workshop

Energy efficient and Renewable Energy (EE/ RE) Technologies

22nd March 2018 at Thangadh

Under the project Capacity Building of Local Service Providers (LSPs)

Supported by GEF-UNIDO-BEE Project Promoting Energy Efficiency and Renewable Energy in selected

Table of contents

WORKSHOP SUMMARY	1
Overview of workshop	1
Summary of points discussed in the meeting	1
Feedback forms	2
Suggestions by participants	2
Learning's by participants	2
ANNEXURE 1: AGENDA OF THE PROGRAM	3
ANNEXURE 2: LIST OF PARTICIPANTS	5
ANNEXURE 3: SELECTED PHOTOGRAPHS OF THE EVENT	13
ANNEXURE 4: SAMPLE FEEDBACK FORMS	15
ANNEXURE 5: COPY OF PRESENTATIONS	19

Overview of workshop

Capacity Building workshop of Local Service Providers (LSPs) and unit owners on Energy efficiency and renewable energy technology was organized by TERI on 22nd March 2018, Thursday in association with Panchal Ceramic Association Vikas Trust (PCAVT) under GEF-UNIDO project. Total 75 participants were present during the workshop out of which 20 were local service providers (LSPs). Agenda of the workshop and list of participants are attached in the annexure 1 and annexure 2 respectively.

Summary of points discussed in the meeting

Mr. Nanji Bhai trustee, Panchal Ceramic Association Vikas Trust welcomed the participants and thanked the team of TERI and UNIDO for arranging the capacity building workshop. He deliberated the necessity to conserve energy in ceramic manufacturing. He encouraged the participants to take the benefit of the training programme and support the industries in the cluster in order to maintain the optimum efficiency.

Mr. Prabhudas Bhai trustee of PCAVT also welcomed all the participants and appreciated the effort made by TERI and UNIDO for arranging such knowledge sharing workshops of various energy conservation and renewable energy technologies for the ceramic industries.

Inaugural session was attended by other vice presidents/trustees of the PCVAT and they sensitised the participants and encouraged to adopt best operating practices in operations as well as in maintenance.

Mr Vora, cluster leader, UNIDO gave a brief background of the GEF-UNIDO-BEE project activities in Thangadh cluster and also explained the objective of the workshop. He informed about the current available equipment's at energy cell and how industries can benefit by availing energy audit services at low costs. He also shared some success stories implemented in the cluster such as energy efficient ceiling fans in drying applications and VFD retrofitting in air compressors.

Mr. Ayan Ganguly gave descriptive presentation on best operating practices in various utilities in the ceramic manufacturing process. He explained the primary reasons which may affect the operational efficiency of the process equipment such as ball mills, kilns, etc. and associate utilities in the ceramic industries. He also discussed about various energy conservation techniques which can be adopted in the existing facilities. He also shared various case studies to optimise the existing thermal and electrical system.

Mr. Pawan Tiwari presented new technologies being used in developed countries and large industries in India which can be easily adopted by our units in order to improve overall energy consumption and quality. He has presented various case studies on new and renewable energy technologies which has a significant effect on reduction of energy consumption.

Feedback forms

Based on the analysis of the feedback forms received from the participants, it is observed that workshop was well received by the participants and 100% participants were satisfied with program, Q&A session and training module provided to them. About 93% participants have rated overall program as "excellent" while rest of them have rated it as "good". More than 90% of participants rated were satisfied with arrangements made, training schedule and agenda of the program. Few sample feedback forms are attached in the annexure 4.

Analysis of feedback forms

Suggestions by participants

Some participants have made suggestions as follows;

- 1) Technology specific knowledge sharing workshops to be organized frequently
- 2) Unit level hands on training program on energy efficiency to be organized

Learning's by participants

Some of the topics learned by the participants and mentioned by them are listed below;

- 1) How to reduce energy consumption in air compressor
- 2) Low thermal mass application in kiln
- 3) Adoption of IE3 motors

Annexures

Annexure 1: Agenda of the program

Capacity building workshop Energy efficient and Renewable Energy (EE/ RE) Technologies

Thursday, 22nd March 2018

Auditorium, PCAVT Building, Thangadh

Under the project:

Capacity Building of Local Service Providers (LSPs)

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Agenda

10:30 - 11:00	Registration
11:00 - 11:15	Welcome Address
11:00 - 11:15	Mr Kirti bhai Maru, President, Panchal Ceramic Association Vikas Trust
11:15 - 11:30	Address
11:15 - 11:50	Vice Presidents, Panchal Ceramic Association Vikas Trust
11:30 - 12:00	GEF-UNIDO-BEE project and initiatives in Morbi cluster
11:50 - 12:00	Mr P. Vora, UNIDO Cluster Leader - Thangadh
12:00 - 13:00	Energy conservation opportunities in Ceramic manufacturing process
12:00 - 13:00	Mr Ayan Ganguly, TERI
13:00 - 14:00	Lunch
14:00 - 15:00	New and renewable energy technologies options in Ceramic manufacturing
	process
	Mr Pawan Tiwari, TERI
15:00 - 16:00	LSP Presentations
	Q&A
16:00 - 16:15	Vote of thanks
10.00 - 10:15	Mr Ashwin Bhai, Panchal Ceramic Association Vikas Trust

Organized by

Panchal Ceramic Association Vikas Trust

Annexure 2: List of participants

Capacity building workshop Energy efficient and Renewable Energy (EE/ RE) Technologies

22nd March 2018, Auditorium, PCAVT Building, Thangadh

s.	No	Name	Organization	Mobile No	Email ID	Signature
1	1.	Manan Patwani	Milestone Presmatics Athmediabad	2304805701	manan & milestone Prieumatics . com	Maham
1	2.	Yishwas Visola	Atlas Copco	9898686964	vishniosvinda93@queul	Aula
	3.	Bharresh C - Karal	CU.Shah college of Engg & Technology, CU. Shah University	9879154659	bhavesh. eee. ccet @ gmail.com	BL
1	4.	Vaibhav Mehta	C. D. Shah College of Engineering & Tech. Suzendranger	8469924935	vaibhovkmetta@yahoo	yund f
-	5.	Hrchit Shah	Allas Copco	9925152391	globalairtechsystems.	phA-
1	6.	Grapal Trivedi	EL Gri Equipments Ltd.	7490024975	gopal Celgi com	(roogto

S. No	Name	Organization	Mobile No	Email ID	Signature
7.	HSkyan Dunla	HIS ECOR FOOD PRENT	ALCCOPP.	shy an leman	Ony
8.	SANJAY ONALOOJIA	SIMPMONAN CEAPMIC	99133 23062	-	mig
J.	Fignal Brigipat	Sarry Rodructorie	y J4264 39723	-	H
10	Jugar. I. Savadiya	Porman Conomic	3601866340	-	B
1.00	UPENDRA . N. BLORANY		9825830812	-	6405
12	PALAK SLETHAR	Elgi Aircomp milesion Rom		Services @ pheumotik	Per
13	Aslitsh Solank	Elgi Alscomp milestone fun		Sales @ milestone Preumortice	P?
14	Vinul Savadiya.	2	9979601008.	-	sty
15	Johvalbhan vosin Telerhorner Co	- Varias Tates Waster Cx	CEDEERCE		≫—
16	Nonjibhai Bhorania	Reliance Cevamics	98255 64935		NBhaying

S. No	Name	Organization	Mobile No	Email ID	Signature
17	BhovaHohai Dave	Aditya Ceramics	34276 63835		P-
18	Jogeth Pettel	Elgi Equippents	3724326706		P
19	Ajithohan has	Five clay suppliques.	7F12678259		Amp
20	समराधेय धोरश धर्डस	UISH? YPO	6-6505 19525		
21	अन्कर सेनेश्रोटीसे प्रा था.	sizitesz	CC2U2 1(199		
22	ell' 1 200 2002	postmete.	94266 48968		zophin
23	Vishal Gohil	Vishwakkumy Znd.	9913554143		2.shl
24	K.D WOHL	Vishal Cena Ant	9824241577		Ishel
25	ามรุยา สายนาร	हिनुलारी लगत पार्टनर	66222 1939 (
26	Indian Penerson's	-Mysizz	(1271 N 8333		2009812

3 7

S. No	Name	Organization	Mobile No	Email ID	Signature
27.	pharrie Patel	Empise Comprenses	99099 65852	chand O compire Comprender.com	Daty
28	Solvi suitory	Ravibhas	8405094494	Selvi samitury emai	the .
29	Syndrig cerumic	Dusmer	9979499hoe		to the
30		5j . mo= 8 98256 232	W2012		
31	MOLEUN SAM	MIZERZ	98252 76205		
32	NEW LIGHT CERAMIC	Jewjendra bheri	98252 18199	newlight Ceramica gravil. com	JK.non
33.	Nixcom Chamban	D-mi Guderprije	8460126586	Duincienterpoise Ognai! con	A
	Mulice Brothers	Ristone	QS37777216	flomation and icious. con	ban
35.	PIYUSH THAKER	Sizmen's LTD-	9909904993	Piyush. thater @ siemens.	Pot
36	- TUSHAR R. PAPEL	PREMIER DHAREARACK	9824284009	tustan-pppl@lictward	An

teni

1

.

S. No	Name	Organization	Mobile No	Email ID	Signature
37	Golden Came	Kishanbhai	98258 2560	bhoranigakishan Zoro C Smailican	£
38	MUKESH SHAH	DEEP (ERAMEC INDUSTREBS	9879520628		Dim
39	RADIESH SHAH	RAJDGEP CERAMER INDUSTREGS.	9825191827		æ
40	· · · · · · · · · · · · · · · · · · ·	calores cereguices	9727277477		Fort
41	Marti cermiz	Kirtistis praipon	<i>१४१६११६५५</i>		- ARE
42	Swetg Pottery	Marin	9825078841		æ.
43	Kol HAY 2mailing	Jan cridul	9427045483		John Coln
44	2nbn2n21ht	Jan cr and	9427045483		2 for confre
45	orional an inital	तिन्ही केनेशिक्स	7069039202	-	Charles 12

No.	Nome	organisation	Mobilano.	Emailid	Signeture
46.	Sarvodaya Seria	HuRakillani			cargon
47-	Sopie Manual bhi	Soni cettamic		(T OTLALAN
43	Astox binai	Gajendra ceromic			Luxin
49.	Thyan bui	Saisi smither me			ann
50,	Leconina	Saniday Massim			Batarpho
57.	molit marba	aswal potes weeks		Oscoul Pottos week & sale	molion
52.	Haresh Presapute Tecnandeep Ceram	Sansharry asur.		jeen undeeplerumres@sm	slim
57.	Lanco Sanitanyware			format lek htaniya & yahoo com	
54	Kussik Cermiz	-Turn & Puter	4825 4 45653		Goog.
55.	Brailon 20024	રે મેન્સ નાલિનસાઇ શાહ			9tone
52.	Panul 2021mg	यार्टनर मेंडुललाई शाउ	6-8230 848C3		200 2115
57	કાશનાધ્વક સારાધાક	रगंतिलासलारे परेल	५ ५२ ४२ २२ २२		P _ 2
58.	Rydeep (examine Jag	Rajech J. Shoh	9825191828		40-
53	New Light lerane	Jihal J. Mary	937777771		store .

57.14	Factory NAME	Desing. Name of ormel.	Mo. No	Sing
60	Astha ceramic	Scitchanpoza Niky), L.		(MS
11	oy min miz Quali	senzrunme)	98256 95709.	anzoummer
(2	218712 21m DII27HI 202	27717 mil	9980993600	Cour
62	प्रमाति रोईडट्रीय	મગ્રુરભ ાદે	98252 24261	
14	ลีนาล เ สายนาร	બરક્લાઇ	98252 17673	
15	Max Ceramic Inol	Muyur Shah	98252 17678	NO.
20	New Light Ceramire.	Jinal Maru	93777777 \1	42
67	Pradie vore	Clyslev leade	9824384234	00-1
18	champion Ceramic	Sanjay bus	982526591	2
69	Y Third Growt	Structure-	98252771717	Sm
20	BEYZMZIZAS.	र्यंडक रहास संधारियार	9924500880	Pinkog

SY.No	Name	organisation	Creat it.	molile no.	SIJn.
71	HOTHINGON ANAISMY	dister a	39×9000981		Runs
72	BEN 27353)50.	Baimid	4979000 481		32
73	2194 202123.	21'szmil	98252 18212		my
74	มชุดา มารเมาร	รระวารณาย์ บุลนโก	५८७५३ ३२५८५		
75	अगरता सारामाऊ	अफाललाही शाएड	G-CRUZ 13536-		
76.					
77					
78		z			
. 75					
80		p-			
81					
-					

Annexure 3: Selected photographs of the event

Annexure 4: Sample feedback forms

Capacity building workshop

Energy efficient and Renewable Energy (EE/ RE) Technologies

Thursday, 22nd March 2018

Auditorium, PCAVT Building, Thangadh

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Parameter	Feedback		
	Excellent	Good	Average
How would you rate the overall programme?	V		
How would you rate overall arrangements?	L		
How was the training schedule and agenda?	~		
How was the industrial site visit?	V		
Do you think that adequate time was provided for each topic?	Yes [1]	No	[]
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [🗸]	No	[]
Do you think that the background training manual is informative and useful enough?	Yes [V]	No	[]
Do you think that the discussion on EE/RE will help you in your work?	Yes [1/]	No	[]
Suggestions & Recommendations for improvement:			
Name two learning, which from this programme you will be able to in	mplement in your plant?	•	
Name two learning, which from this programme you will be able to in	mplement in your planti 2 moturs cand	I3 ma	ton), I fr
Name two learning, which from this programme you will be able to in	nplement in your plant 2 moturs and 12 ven im.	I3 me Rostend	tons, J for
	mplement in your plants 2 motors and 12 ven im, inges in M	I3 mas posteind y faceto,	ton), I for
Name two learning, which from this programme you will be able to in Frisst, I don't know. what is I second, V.F.D. cu'r comprense, it US. NOW I try to Both cha Signature: Scotton	2 motor and 12, ven im, inges in M	I3 ma postand y factur	tons, I for
Name two learning, which from this programme you will be able to in Frisst, I don't know. what is I Second, V.F.D. cu's compression it US. NOW I toy to Both cha Signature: Sama	2 motor and 12, ven im, inges in M	I3 mas posteind y faceto,	ton), I fo for
Name two learning, which from this programme you will be able to in Frisst, I don't know. what is I second, V.F.D. cu'r comprense, it US. NOW I try to Both cha Signature: Scotton	2 motor and 12, ven im, inges in M	I3 mo posteint y forestu	tonj, I fe For

Organized by

Capacity building workshop

Energy efficient and Renewable Energy (EE/ RE) Technologies

Thursday, 22nd March 2018

Auditorium, PCAVT Building, Thangadh

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Parameter	Feedback		
-	Excellent	Good	Average
How would you rate the overall programme?	1		
How would you rate overall arrangements?	~		
How was the training schedule and agenda?	V		
How was the industrial site visit?	~		
Do you think that adequate time was provided for each topic?	Yes [No	[]
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [No	[]
Do you think that the background training manual is informative and useful enough?	Yes []	No	[]
userui enougirr			
Do you think that the discussion on EE/RE will help you in your work?	Yes [//]	No	[]
Do you think that the discussion on EE/RE will help you in your work?			[]
Do you think that the discussion on EE/RE will help you in your work? Suggestions & Recommendations for improvement:			[]
Do you think that the discussion on EE/RE will help you in your work? Suggestions & Recommendations for improvement: Name two learning, which from this programme you will be able to imp			
Do you think that the discussion on EE/RE will help you in your work? Suggestions & Recommendations for improvement: Name two learning, which from this programme you will be able to imp			
Do you think that the discussion on EE/RE will help you in your work? Suggestions & Recommendations for improvement: Name two learning, which from this programme you will be able to imp			

Organized by

The Energy and Resources Institute

Capacity building workshop

Energy efficient and Renewable Energy (EE/ RE) Technologies

Thursday, 22nd March 2018

Auditorium, PCAVT Building, Thangadh

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Parameter		Feedback		
		Excellent	Good	Average
How would you	rate the overall programme?	~		
How would you	rate overall arrangements?	~		N.
How was the tra	ining schedule and agenda?	1/		
How was the ind	lustrial site visit?			
Do you think that adequate time was provided for each topic?		Yes	No []	
Do you think that satisfactory answers were given to your questions during the training programme?		Yes	No []	
Do you think that the background training manual is informative and useful enough?		Yes [1	No	[]
Do you think tha	t the discussion on EE/RE will help you in your work?	Yes [No	[]
Suggestions & R	ecommendations for improvement:	CARGE AND	Contraction of the second	STAN PRINT
Name two learn Ant	ing, which from this programme you will be able to imp ん <u>Comptues ov</u> いか VFD ンチュ かっつっく と	lement in your plant?	9	
А. Д	A Compress or with UFD.	lement in your plant?	2	
Signature:	A Compared or with UFD. 2E3 motor 1.	lement in your plant?		
А. Д	A Compassor with UFD. DEJ motor ?.	lement in your plant?	2	
Signature: Name of particip	A Compared or with UFD. 2E3 motor 1.	lement in your plant?	2	
Signature: Name of particip	A Compassor with UFD. DEJ motor ?.	lement in your plant?	2	

Capacity building workshop

Energy efficient and Renewable Energy (EE/ RE) Technologies

Thursday, 22nd March 2018

Auditorium, PCAVT Building, Thangadh

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

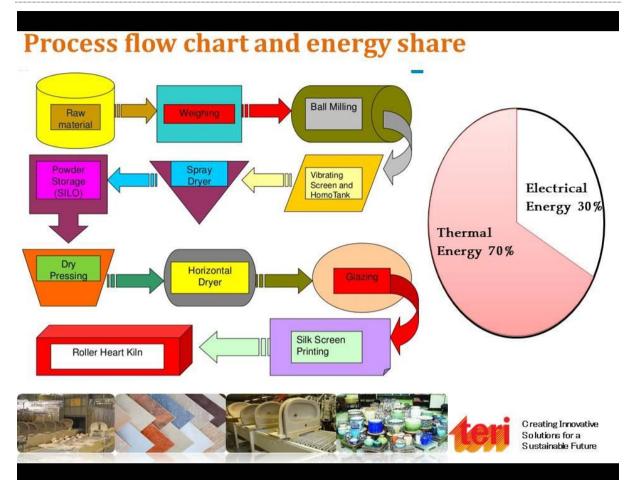
Parameter	Feedback		
	Excellent	Good	Average
How would you rate the overall programme?			
How would you rate overall arrangements?	L		
How was the training schedule and agenda?		L	
How was the industrial site visit?		L	
Do you think that adequate time was provided for each topic?	Yes [No []	
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [Lat	No []	
Do you think that the background training manual is informative and useful enough?	Yes [1-]-	No []	
actor chought			
Do you think that the discussion on EE/RE will help you in your work? suggestions & Recommendations for improvement: for a) for gram. It has to referate	Yes [4]	<u>№</u>	[]
Do you think that the discussion on EE/RE will help you in your work?	J foriorere	<i>ъ</i>	
Do you think that the discussion on EE/RE will help you in your work? suggestions & Recommendations for improvement: for a) for gram. It has to referate	J foriorere	<i>ъ</i>	[]
Do you think that the discussion on EE/RE will help you in your work? suggestions & Recommendations for improvement: for a) for gram. It has to referate	J foriorere	<i>ъ</i>	
Do you think that the discussion on EE/RE will help you in your work? Suggestions & Recommendations for improvement: for al for gram. At has to reference lame two learning, which from this programme you will be able to im	J foriorere	<i>ъ</i>	
Do you think that the discussion on EE/RE will help you in your work? Suggestions & Recommendations for improvement: for all for gram. It has to reference lame two learning, which from this programme you will be able to in ignature:	J forcere	<i>ъ</i>	
Do you think that the discussion on EE/RE will help you in your work? suggestions & Recommendations for improvement: Jos of Program. It has to reprote Jame two learning, which from this programme you will be able to in ignature:	plement in your plant?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Do you think that the discussion on EE/RE will help you in your work? Suggestions & Recommendations for improvement: Job of Program. It has to reprote Jame two learning, which from this programme you will be able to in ignature: lame of participant:	plement in your plant?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Do you think that the discussion on EE/RE will help you in your work? Suggestions & Recommendations for improvement: Jos of Program. It has to reprote Jame two learning, which from this programme you will be able to in ignature: lame of participant: Drganization: Mark ELLACE ESUPPERT	plement in your plants	<i>ъ</i>	

The Energy and Resources Institute

PANCHAL CERAMIC ASSOCIATION VIKAS TRUST-THANGADH

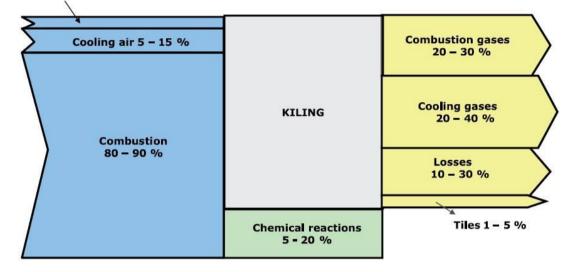
Annexure 5: Copy of presentations

Energy Efficient and Renewable Energy technologies in ceramic industries

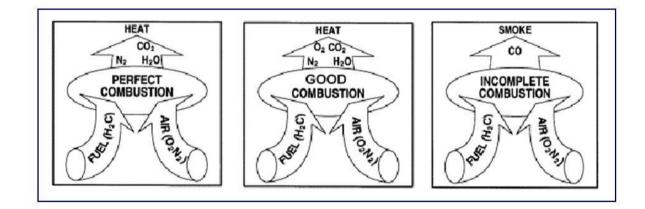

Thangadh Ceramic Cluster 22.03.2018

Outline of presentation

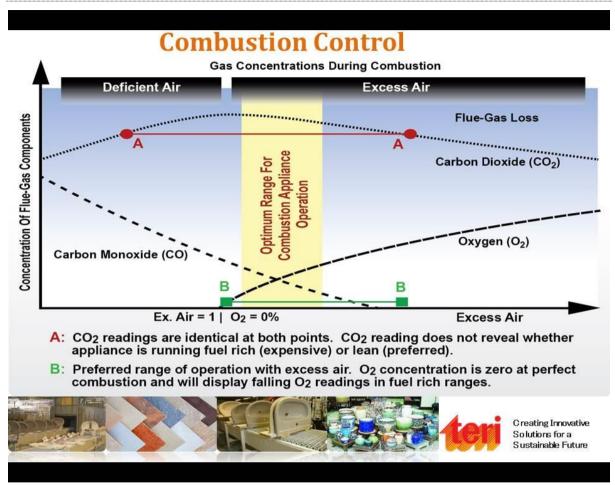
Process flow chart and energy share Major energy guzzlers Equipment wise energy conservation Thermal system **Electrical systems Renewable energy system**



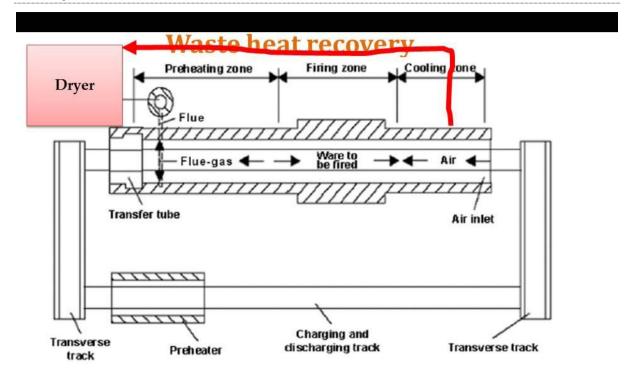
Major energy consumer and their share


Shan-key diagram for kiln

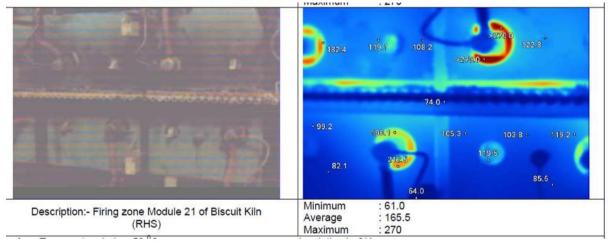
Tiles and oxidising air 5 %

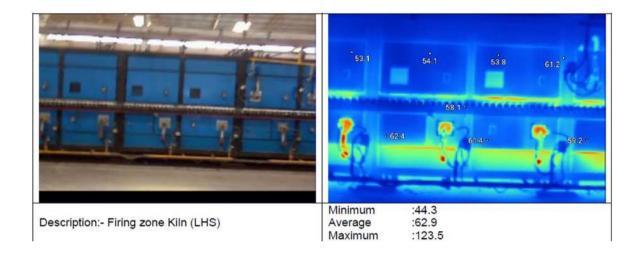


Combustion

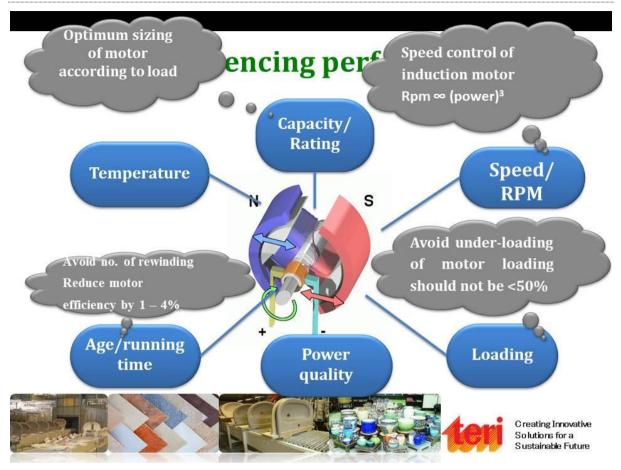


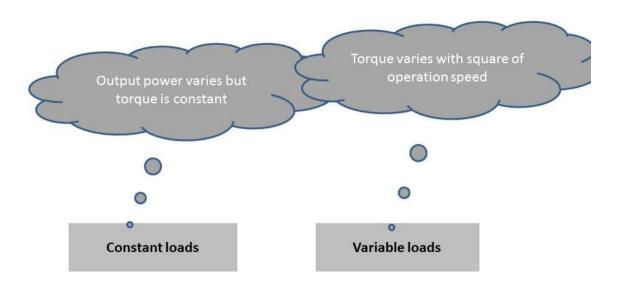
Benefits of combustion control


- > Reduce excess fuel consumption.
- Reduce blower power consumption
- > Increases exhaust temperature
- Give higher benefits in preheated combustion air as well as in dryer applications

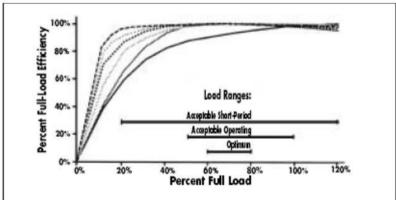


Reduction of radiation loss



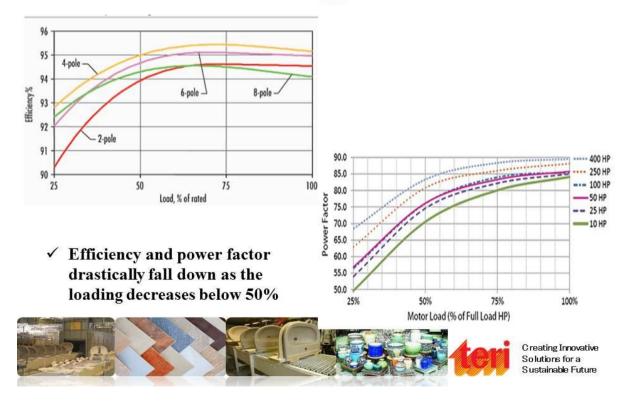

Electric Motor

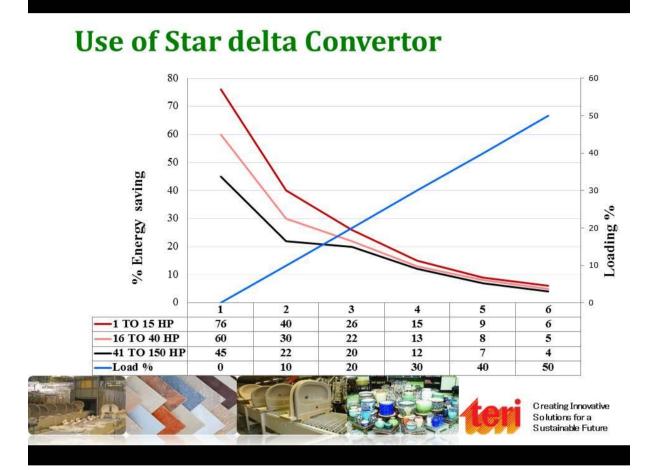
C reating Innovative Solutions for a Sustainable Future


What are the type of Motor Load

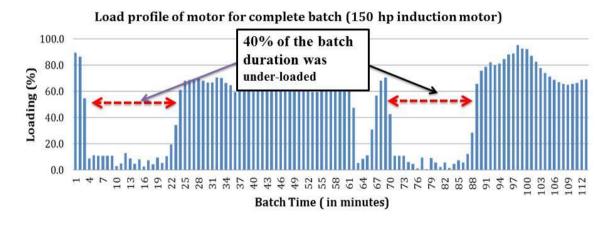
Efficiency of Electric Motors

Motor part load efficiency


- Designed for 50-100% load
- Most efficient at 75% load
- Rapid drop below 50% load

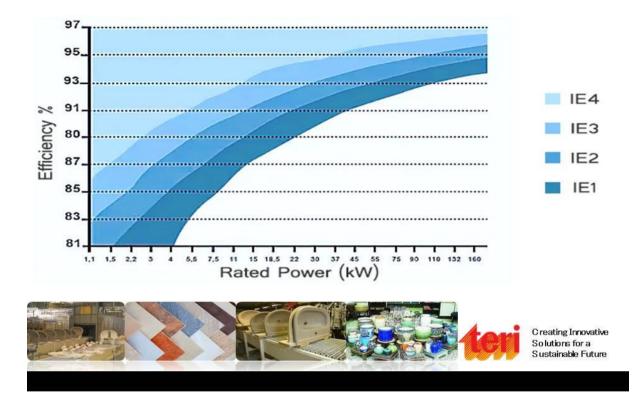


Energy efficiency opportunities in motors

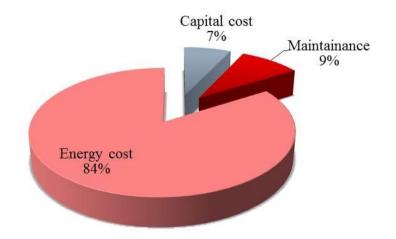


Avoid under-loading of motor

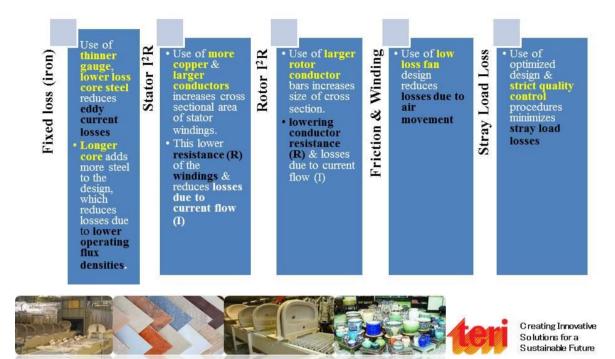
Case study of star- delta convertor



Average saving was estimated to be about 22% with a simple payback period of 9 months



C reating Innovative So lutions for a S ustainable Future


Use of high efficiency motors (IE2, IE3)

Share of capital cost and running cost

Case Study: Replacement of rewinded standard motors with energy efficient motors

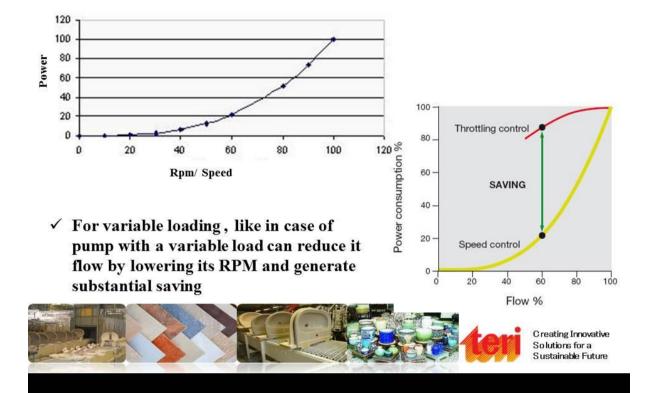
About 37 number of standard efficiency motors of rated 3.7 kW to 22 kW are found to be re-winded.

:

•

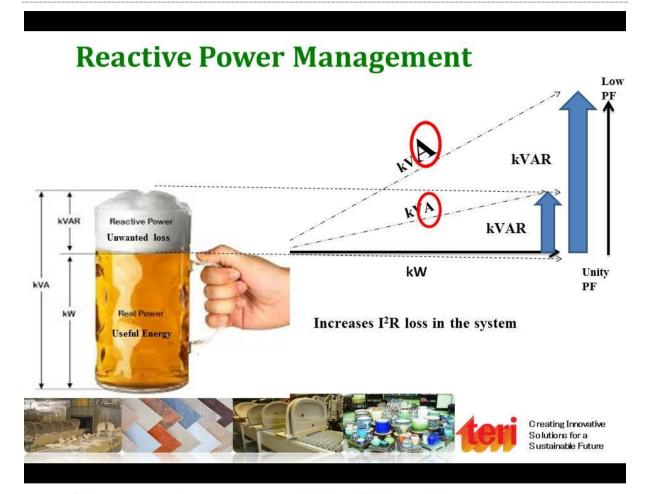
•

:

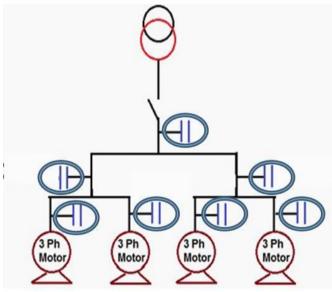

- □ Rewinding leads to a drop in the efficiency.
- □ Efficiency improvement with IE3 motor:
 - > Annual Energy Savings
 - > Annual Cost Savings
 - Cost of Implementation
 - > Payback Period

- 1.5 Lakh kWh Rs. 4.58 Lakhs
- Rs. 12.50 Lakhs
- less than 3 years




C reating Innovative So lutions for a S ustainable Future

Speed control of induction motor



Type of Electrical Systems In Industry

How to Improve PF of the System

- Identification of source.
- Estimation of required kVAr compensation
- Sizing of capacitor banks
- Installation of fixed type capacitor bank at the load end.
- Installation of Automatic power factor controller at the main incomer.

(appropriate stages should be provided as per load requirement)

Load End Capacitor Requirements

Motor Rating (HP)	Capacitor rating (kVAr) for Motor Speed					
	3000	1500	1000	750	600	500
5	2	2	2	3	3	3
7.5	2	2	3	3	4	4
10	3	3	4	5	5	6
15	3	4	5	7	7	7
20	5	6	7	8	9	10
25	6	7	8	9	9	12
30	7	8	9	10	10	15
40	9	10	12	15	16	20
50	10	12	15	18	20	22
60	12	14	15	20	22	25
75	15	16	20	22	25	30
100	20	22	25	26	32	35
125	25	26	30	32	35	40
150	30	32	35	40	45	50
200	40	45	45	50	55	60
250	45	50	50	60	65	70

C reating Innovative Solutions for a Sustainable Future

Improve power quality

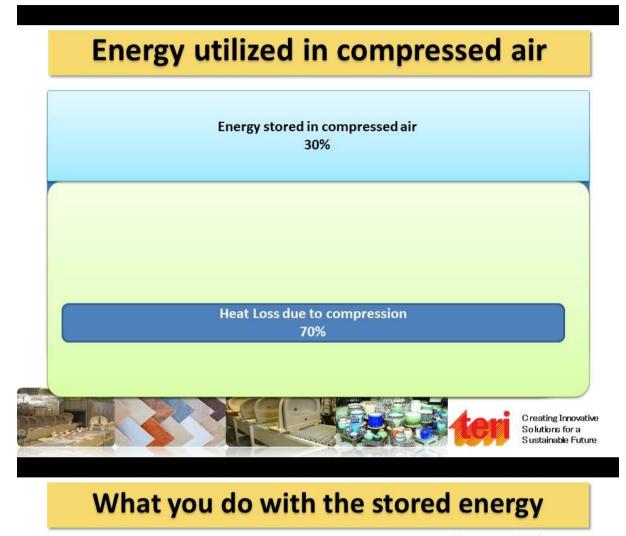
Motor performance affected by

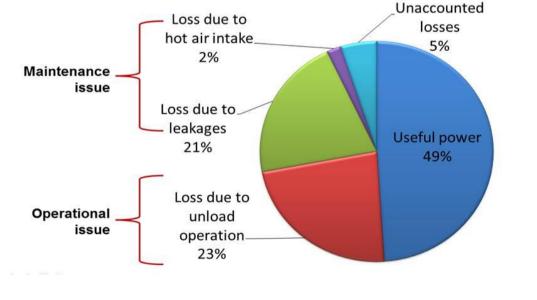
- Poor power quality: too high fluctuations in voltage and frequency
- Voltage unbalance: unequal voltages to three phases of motor

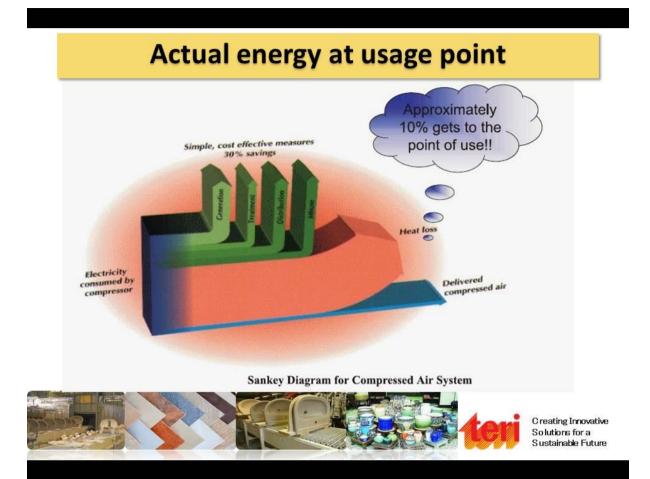
Improve power quality

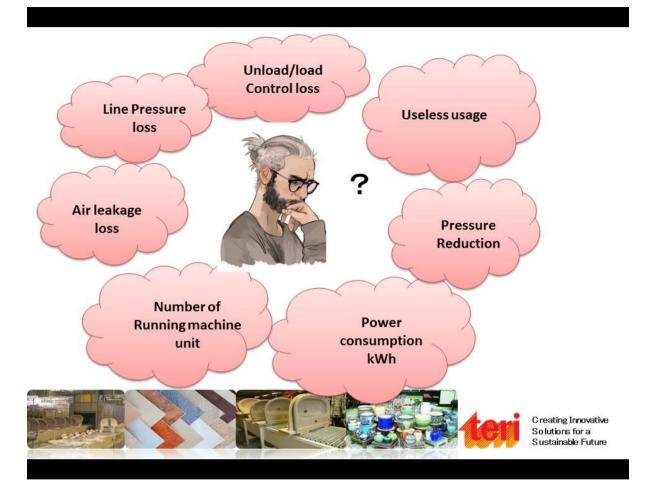
- Keep voltage unbalance within 1%
- Balance single phase loads equally among three phases
- Segregate single phase loads and feed them into separate line/transformer

Parameters	Example 1	Example 2	Example 3	
Voltage unbalance (%)	0.30	2.30	5.40	
Unbalance in current (%)	0.4	17.7	40.0	
Temperature increase (°C)	0	30	40	




Compresses air system


Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies


Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

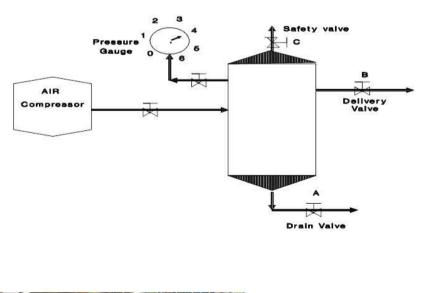
What can you save ?

Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

How can you save?

Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Assessment of compressor


- Volumetric efficiency/ Free air delivery (FAD)
 - FAD reduced by ageing, poor maintenance, fouled heat exchanger and altitude
 - · Energy loss: percentage deviation of FAD capacity
- Leakages
 - Energy waste proportional to input energy
 - Drop in system pressure results in high generation pressure
 - Shorter equipment life

C reating Innovative Solutions for a Sustainable Future

Capacity assessment method

- Isolate compressor and receiver; close receiver outlet
- Empty the receiver and the pipeline from water
- Start the compressor and activate the stopwatch
- Note time taken to attain the normal operational pressure P₂ (in receiver) from initial pressure P₁

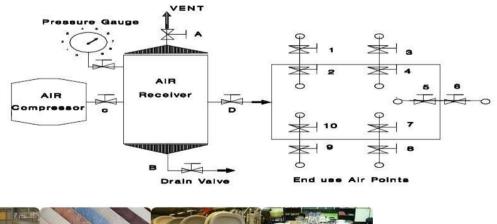
Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Capacity assessment method ... contd.

Calculate the capacity FAD

$$Q = \frac{(P_2 - P_1)}{P_0} x \frac{V}{t}$$

- $Q = Free air delivery (m^3/min)$
- P_2 = Final pressure after filling (kg/cm²a)
- P_1 = Initial pressure after bleeding (kg/cm²a)
- $P_0 = Atmospheric pressure (kg/cm^2a)$
- V = Storage volume including receiver, after cooler and delivery piping (m³)
- $t = Time take to build up pressure to P_2$ (minutes)


In case of high suction air temperature as compared to ambient air temperature, use correction factor $(273+T_{ambient})/(273+T_{suction})$

Creating Innovative Solutions for a Sustainable Future

Leakage Quantification Method

- System to be on No Load i.e. no usage of compressed air
- Switch the compressor ON
- With a stopwatch, note time taken to load and unload the compressor •
- Run test for 30 minutes

Leakage quantification method

Calculate quantity of leakage*

$$Q_L = \frac{Q \ x \ t_{on}}{(t_{on} + t_{off})}$$

 $Q_{I} = Leakage quantity(m^3/min)$

 $Q = Free air delivery (m^3/min)$

t_{on} = On load time i.e. loading period (seconds)

t_{off} = Off load time i.e. unloading period (seconds)

In a well maintained system, compressed air leakages are below 10%

*This test is not applicable for VFD based air compressor

Creating Innovative Solutions for a Sustainable Future

Energy Saving Opportunities

Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Installation of energy efficient air compressor

Before

- Rated FAD 1.48 m³/min
- Type Reciprocating
- Operating pressure 10 kg/cm²
- Specific power consumption 9.23 kW/m³/min

- Rated FAD 1.60 m³/min
- Type Screw
- Specific power consumption 6.88 kW/m³/min
- % Energy savings 25.5%
- Simple payback period 2.5 years

Inlet air temperature is higher and generation pressure is way more than demand

Solutions

- Ensure ambient temperature air is available at suction point
- Optimize compressed air generation pressure.

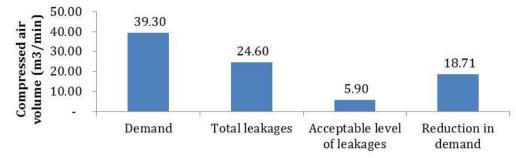
Reduction in compressed air generation pressure and inlet air temperature

Compressed air generation pressure was 7 kg/cm2 100.00 85.0 82.4 80.2 75.9 Power consumption 71.7 80.00 67.8 61.2 60.00 (M 40.00 i) 20.00 7 1 2 3 4 5 6

Compressed air generation pressure (kg/cm2)

- Compressed air pressure requirement at demand side 4 to 5.5 kg/cm²
- Reduce compressed air generation pressure from 7kg/cm² to 6 kg/cm²
- % energy saving was 3.1%, annual electricity savings of 63,490 kWh
- Annual monetary savings of Rs. 3.6 Lakhs

High compressed air leakages in the plant


Solutions

- Replace leaking regulator, joints, pipes and junctions
- Use air amplifier for cleaning purpose

Arresting leakages of compressed air distribution system

Percentage leakages of 62.8% in compressed air distribution network of a food industry

- 66 leakages points were identified and plugged.
- % energy saving was 48%, annual electricity savings of 1,010,578 kWh
- Annual monetary savings of Rs. 59.7 Lakhs, simple payback of 1 month

Screw type compressor with unload condition greater than 10% of the operating time

Solutions

Install VFD on screw compressor

Installation of VFD on compressed air system

Before

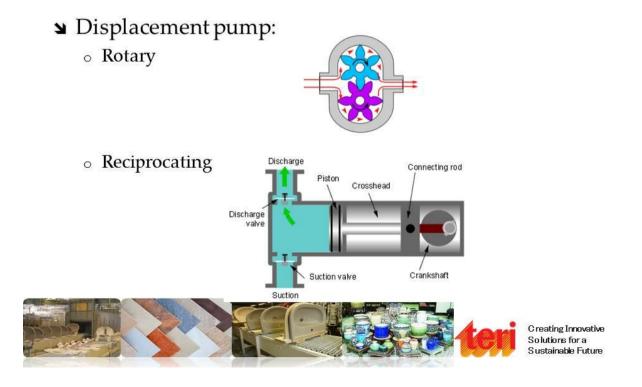
- Rated FAD $2.52 \text{ m}^3/\text{min}$
- Operating pressure 8.5 kg/cm²
- Specific power consumption 8.4 kW/m³/min
- Load to unload ratio 53:47

After

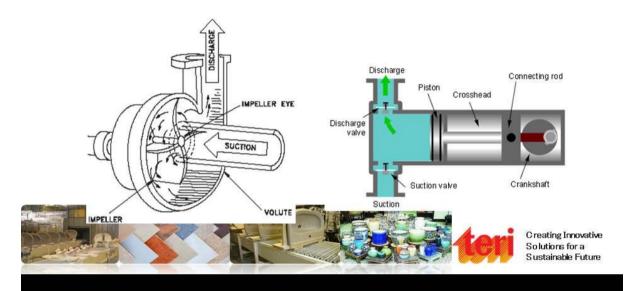
- Annual electricity saving 26,247 kWh
- Annual monetary savings Rs. 2.1 Lakhs
- % Energy savings 24.1%
- Simple payback period 1 year

Pumping system

Pumps


- Pump converts electrical energy into hydraulic energy
- Pumps handling any fluid can be broadly classified as dynamic and displacement pumps.

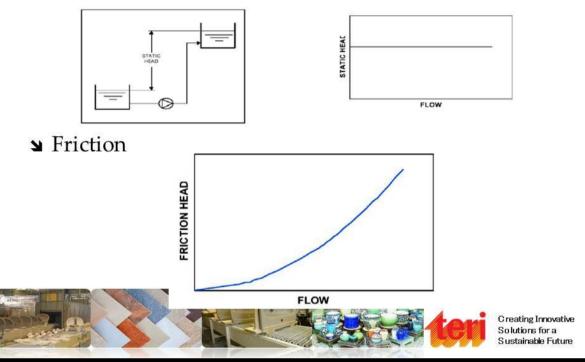
DISCHARGE


IMPELLER EYE

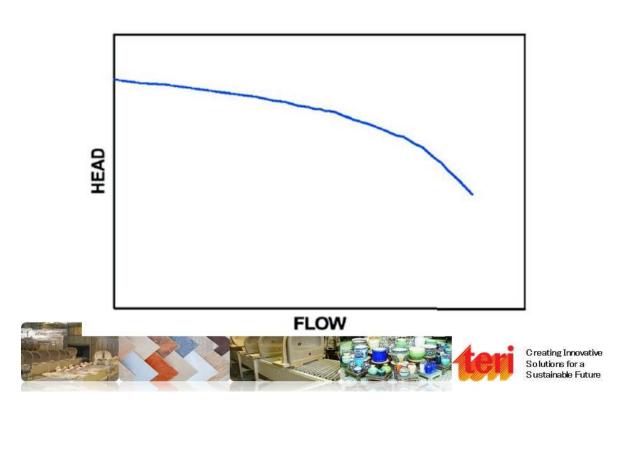
Pumps

Comparison

• Displacement pumps are more efficient than dynamic pumps however efficiency benefits are offset by higher maintenance cost

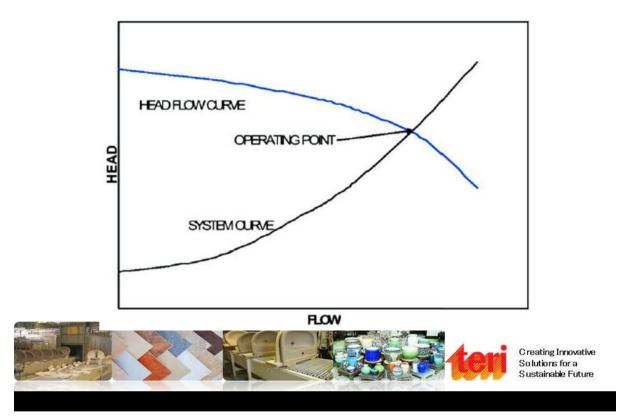

System characteristic

- Solution Source to Destination.
- To do that it has to maintain a pressure to overcome pipe/system/head losses
- Head losses type:
 - \circ Static head
 - Dynamic/friction head



Static and friction head

u Static



Pump performance curve

Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Operating point

Pump equations

- ▶ Hydraulic power = (Flow x density x Total head x g)
 - Hydraulic power in kW
 - Flow in cubic meter per second
 - Density in kg per cubic meter
 - Total head = discharge head suction head
 - \circ g, acceleration due to gravity 9.81 m/s²
- Pump efficiency (%) = (Hydraulic power/Power at shaft) x 100
- Power at shaft (kW) = (Power input to motor x motor efficiency)

Performance assessment of pump

Mismatch of pump performance and system requirement

Solutions

Install appropriate design pump

Installation of Energy efficient pumps

Case of mismatch of pump design parameters and system requirement parameters in captive power plant

Particular	Unit	Before	After
	Design parameters		2
Flow	m3/hr	2,500	2,800
Head	meters	25	15
Rated Power	kW	300	160
(Operating parameters		
Flow	m3/hr	2,613	2,954
Head	meters	13	13
Actual Power consumption	kW	197	143
Pumping system efficiency	%	47	73
Annual electricity savings	kWh/year		473,040
Annual monetary savings	Rs./year		1,442,772
Simple payback period	Year		0.9

C reating Innovative Solutions for a Sustainable Future

Pumps with different design parameters operating in parallel mode

Solutions

Install two similar design pumps

Parallel pumping with different design pumps

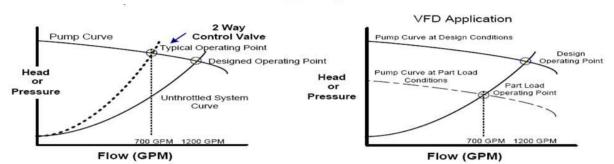
Case of medium scale pulp and paper manufacturing plant

Particular	Unit	Dominating pump	Dominated pump
Existing (different desi	gn pumps operating in	parallel mode)	
Flow	m3/hr	425	198
Head	meters	23	23
Actual Power consumption	kW	39	36
Pumping system efficiency	%	68.2	34.9
Proposed (same desi	gn pump, one working o	one standby)	
Flow	m3/hr		625
Head	meters		23
Power consumption	kW		48
Pumping system efficiency	%		82.4
Annual operating hours	hours		7,008
Annual electricity savings	kWh/year		187,692
Annual monetary savings	Rs./year		959,153
Simple payback period	Years		1.1

Water requirement in the plant is variable

Solutions

Install Variable frequency drive and operate it as per process requirement



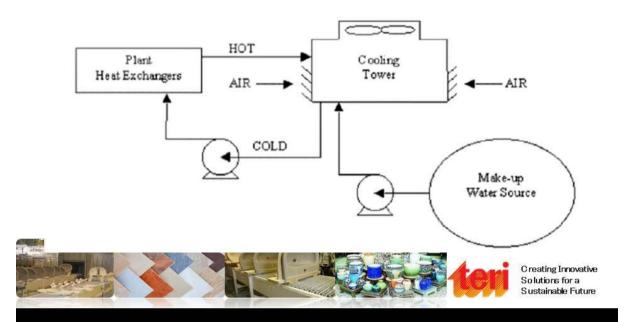
C reating Innovative So lutions for a S ustainable Future

Sustainable Future

Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

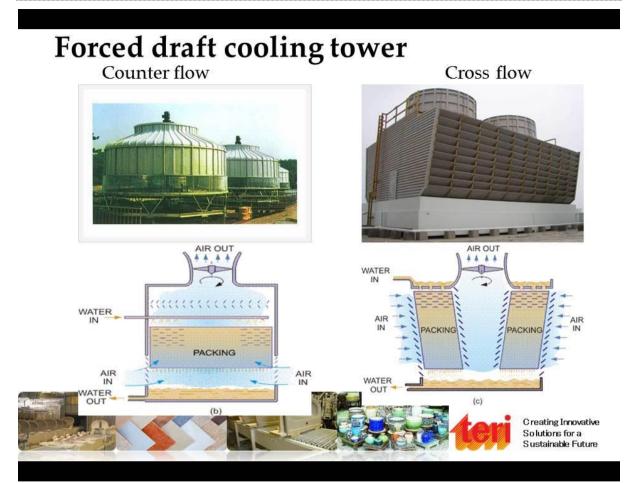
VFD on variable loaded pump

- 7.5 kW cooling tower pump caters cooling requirement of two condensers and one reaction vessel.
- When pump operates for condensers alone (part load) its operating efficiency is 38.6% and during full load operating efficiency is 64.2%.
- Part load conditions exists for 72% of operating time.
- Install VFD to reduce operating flow and head during part load.
- % electricity saving is 9.1%, simple payback period is 1.8 years



Cooling Tower

Cooling tower


 Primary task of cooling water is to reject heat into atmosphere.

Natural draft cooling tower

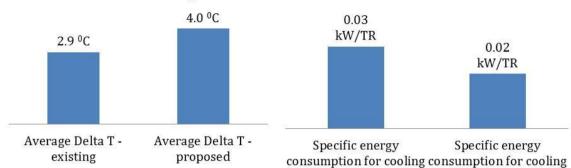
Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Important equations of cooling tower

- Solve Cooling effect (kCal) = Flow of water x density x $(T_i T_o)$
 - o Flow of fluid/air in cubic meter per hour
 - Density in kg per cubic meter
 - T_i Temperature of input water
 - T_o Temperature of output water
- Cooling in TR = Cooling in kCal/3024
- Specific power consumption (kW/TR) = Power input / cooling effect

Performance assessment of cooling tower

Delivered TR is less than design TR


Solutions

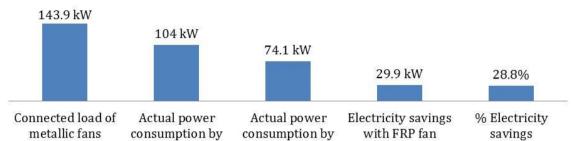
 Renovation of existing cooling tower by replacing choked fill material

Renovation of existing cooling towers

11 cooling towers with choked fill material

- Existing fill material was choked due to dust and algae, which was leading to poor delivery of cooling effect.
- Replace existing fill material with efficient and less choking fill material
- % energy saving is 33.3%, Annual electricity saving 162,575kWh
- Annual monetary saving is Rs. 8.4 Lakhs, simple payback of 1.9 years

CT fan has metallic blades

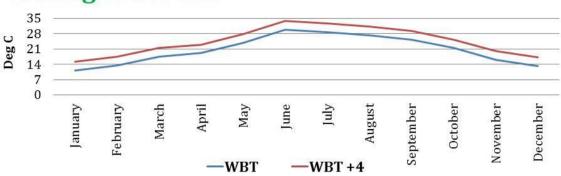

Solutions

Replace with FRP blade fan

Installation of FRP blades in place of metallic blades

12 cooling towers with metallic blades at a large scale plastic plant

- Hollow FRP blades results in higher efficiency, which may be attributed to the special aerodynamic design, streamline finish and lightweight of blades. FRP blades are also corrosion free.
- Annual electricity saving 250,900 kWh
- Annual monetary saving is Rs. 13 Lakhs with simple payback of 8
 months


Load on cooling tower is variable

Solutions

Install thermostatic controller or VFD on fan

Installation of Thermostatic controller on cooling tower fan

- For 7 months a year, WBT+4 ^oC is below 28 ^oC (temperature generally under which fan of cooling tower may be switched off).
- Present operating hours 8,760 hours, proposed case 6,205 hours.
- % electricity saving of 12.4%, annual electricity saving 91,495 kWh
- Annual monetary savings of Rs. 4.8 Lakhs, simple payback of 6 months

Thank you

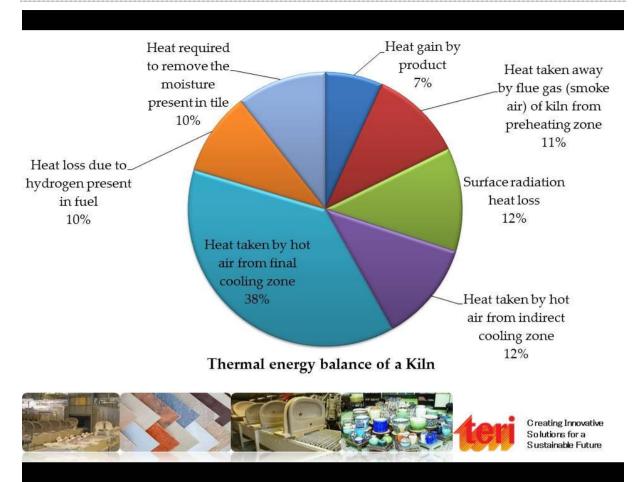
Ayan Ganguly Associate Fellow Industrial Energy Efficiency Division (Teri New Delhi) ayan.ganguly@teri.res.in



Potential of EE/RE Technologies in Ceramics Industry

Creating Innovative Solutions for a Sustainable Future

Solutions for a Sustainable Future


Technologies for Thermal utility

Kiln Energy Balance

Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

VARIOUS OPTION AND TECHNOLOGY AVAILABLE

Main three components responsible for Energy efficiency in Kiln

- ✓ Design
- ✓ Material Movement
- ✓ Draft system

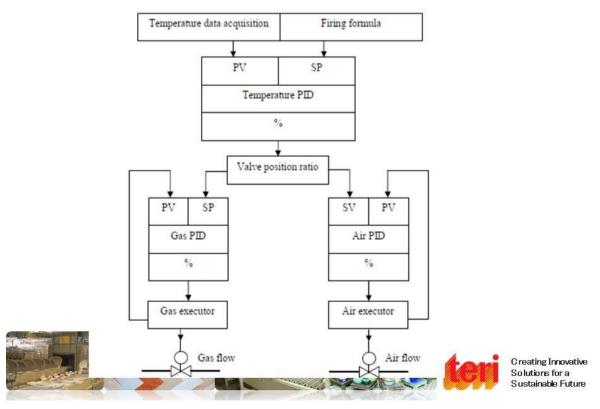
Addition methods to achieve energy efficiency in kiln

- ✓ Energy management system and burners
- ✓ Integrated process control
- ✓ Internal heat re-use
- ✓ The development of low thermal mass (LTM) materials and ceramic fibers has improved kiln efficiency
- ✓ Minimizing non-payload throughput

Technologies available

Creating Innovative Solutions for a Sustainable Future

Efficient combustion control or Burner management system


Automatic combustion control system

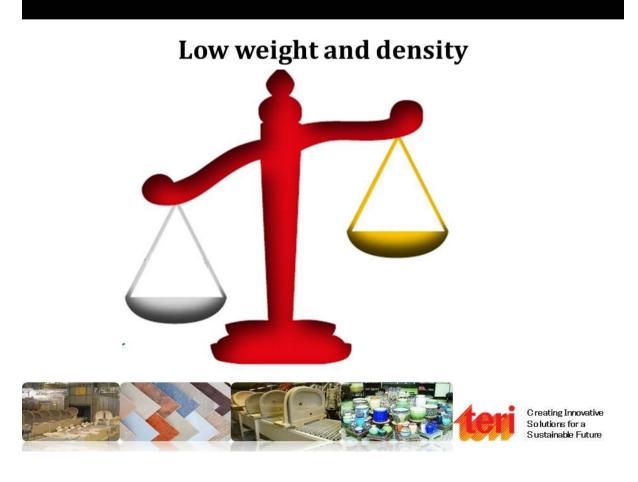
- **Senefits**:
 - Better combustion efficiency
 - Reduces fuel consumption
 - o Increases waste heat recovery potential
 - Reduces blower power consumption
 - Increase productivity

Creating Innovative Solutions for a Sustainable Future

PID based combustion control

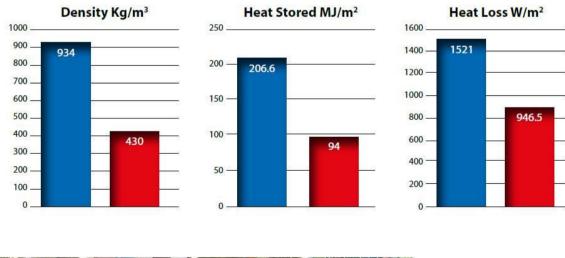
Reduction of dead weight

Principle


- Use of low thermal mass for kiln cart to reduces the thermal weight of the kiln considerably
- Weight reduction in kiln car saves significant amount of energy and also improve material to car weight ratio
- Reduces excess the thermal energy storage in the kiln furniture (Roller)

Ways out and benefits

- Use of improved insulation material such as ultralite and hollow bricks
- Ultralite insulating material with supporting block gives proper support and increase the strength of the kiln base
- Replacing refactory bricks with hollow ceramic coated pipes at the supporting pillars for holding racks
- Dead weight can be cut down to 15 to 25% of the existing weight



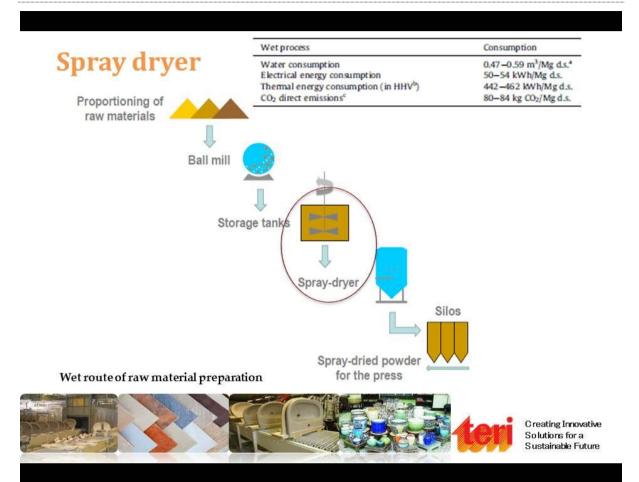
Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Low thermal conductivity

Less heat stored and lower loss

Advantages of Ultralite insulating material

- **u** High open porosity
- **u** Low thermal mass
- **■** Low permeability
- ▶ Low thermal conductivity
- ▶ Low bulk density
- ****Lightweight


C reating Innovative Solutions for a Sustainable Future

Undercar Temperature Comparison	Traditional Construction	Ultralite Construction
Hot Face/Peak Firing Temperature (°C)	1250	1250
Undercar Temperature/Cold Face (°C)	111	97
	Undercar Tempera	ture Saving ‡ 12%

Heat Energy Comparison in Kiln Car Base	Traditional Construction	Ultralite Construction
Total Heat Flow (MJ)	170.1	137.9
Heat Stored (MJ)	433.7	206.7
Combined Heat in Kiln Car Base	603.8	344.6
_	Energy Saving i Insulatio	

Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Efficient way of raw material preparation

Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Dry route of raw material preparation

Parameters	Comparison of wet and dry basic
Water consumption	75% less than wet basis ^{on} m³/Mg d.s.*
Electrical Energy Consumption	30% less than wet basis h/Mgd.s
Thermal Energy Consumption	70% less than wet basis
CO2 direct emission	75% less than wet basis
Screen Extra-granulate Standarization Dryer Silos Granutate for the press	
	Creating Innovative Solutions for a Sustainable Future

Energy efficient technologies in electrical system

Electrical Utility

INDUCTION MOTORS AND ASSOCIATED AUXILIARIES

Why EE Motors

- **u** More than 300 million motors are used in industry
- About 30 million new electric motors are sold each year for industrial purposes alone.
- Selectric motor driven systems in industry are estimated to be responsible for 69% of industrial electricity consumption.
- Most of the motors installed in Indian industries are standard efficiency class (IE-1 or Non IE)
- Approximately 16% motors are rewinded multiple time

Electric motor driven systems

Motors Not Covered by IE3

- Single-phase motors
- **)** DC motors
- Two-digit frames (48-56)
- Multi-speed motors
- Medium-voltage motors
- Totally enclosed nonventilated (TENV) and
- Totally enclosed air over (TEAO) enclosures
- **u** Motors with customized

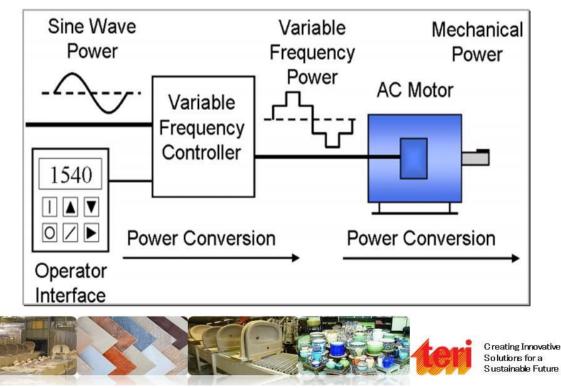
OEM mountings

- ▶ Intermittent duty motors
- **Submersible motors**
- Encapsulated motors
- Motors that are integral with gearing or brake
- where the motor cannot be used separately
- Design D motors
- Partial motors

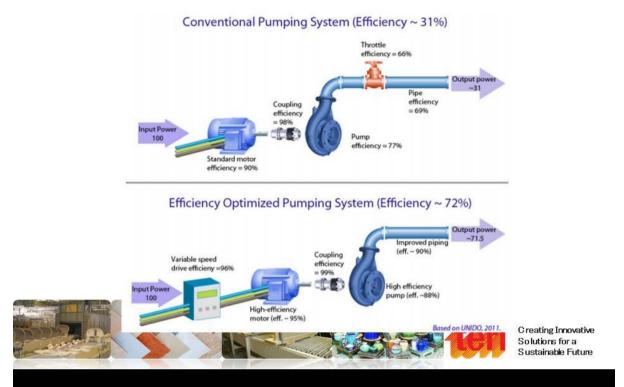
Cost of operation – Life cycle costs

Description	Unit	IE1	IE2	IE3
Motor Load Requirement	kW	13.5	13.5	13.5
Motor Rating	kW	15	15	15
Motor Efficiency at operating load	%	88.7	90.6	91.4
Input Power	kW	15.2	14.9	14.8
Motor loading	%	90.0	90.0	90.0
Annual electricity consumption (@ 5000 hours per year)	kWh/Year	76,099	74,503	73,851
Difference in electricity consumption	kWh/Year	-	1,596	2,248
Increased in running (@ Rs. 6.5 per kWh)	Rs./Year	-	10,373	14,612
Initial investment	Rs.	25,500	29,950	31,875
Increase in Investment	Rs.	-	4,450	6,375
Lifecycle cost (@ 5 Years)	Rs.	24,98,724	24,51,308	24,32,039

Incremental cost of motor (IE3) will be recovered within 5 months.



Variable loads and VFD or ASD


- Many motor applications have high operating hours but variable loads.
- VFD/AD helps in adapting motor speed and torque to the required load.
- Largest benefit comes with pumps & fans in closed loops for which power consumption varies as a cubic power of their rotational speed.
- In air-conditioning systems, the temperature and flow control of pumps and fans can be achieved with VSDs, reducing on/off cycles and providing a more stable indoor climate

Schematic variable-frequency drive

Application of VFD

Gears and transmissions

- **u** Gears are used in some applications to convert motor speed to the required speed.
- Some types of gears (worm gears with very high gear ratios) can be very inefficient
- Sear losses come from tooth friction and lubrication churning.
- Losses tend to be between 2% and 12% higher in new gears until the teeth are smoothed.
- High gear losses can be avoided by using a motor with a pole number and respective speed closer to the desired rpm of the driven equipment.
- If the gear is not used to provide maximum torque at low speed, a VFD can be used instead.

Gear efficiency

Gear type	Normal ratio range	Pitch line velocity (m/s)	Efficiency range
Spur	1:1 - 6:1	25	98% - 99%
Helical	1:1 - 10:1	50	98% - 99%
Double helical	1:1 - 15:1	150	98% - 99%
Bevel	1:1 - 4:1	20	98% - 99%
Worm	5:1 - 75:1	30	20% - 98%
Crossed helical	1:1 - 6:1	30	70% - 98%

Poly cogged belt

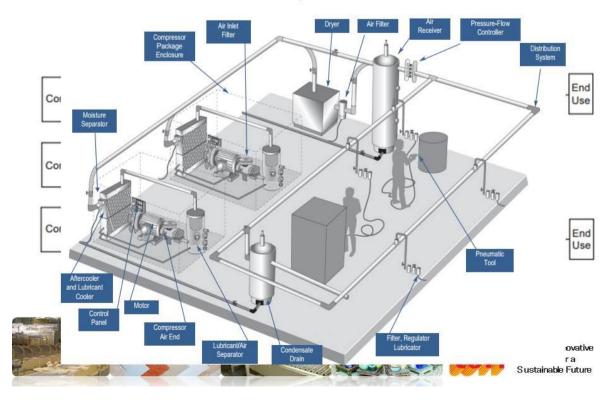
- V-belt drives can have a peak efficiency of 95% due to slippage occurance
- Poly cogged belt will have 98% peak efficiency due to less slippage compared to V-belt
- · Also they run cooler and are durable hence last longer

Electrical Utility

AIR COMPRESSORS

Overview and Applications

- Compressors are used in the following three electric motor-system applications:
 - air compressors for compressed air,
 - liquid natural gas, gas transport, etc.;
 - cooling compressors; and heat pumps.
- Compressor technology uses reciprocating, rotary screw and centrifugal systems.
- Many compressor systems run in an efficiency range of only 5% to 10%


Losses in a compressed-air system

Source of power loss	Transferred "useful" power (kW)	Power loss (kW)
Electrical power input	100	
Air from compressor	10	90 (heat)
Treatment	9	1 (e.g. filter pressure drop)
Leakage	6	3 (leakage)
Distribution system	5.5	0.5 (e.g. excess pressure drop)
Over-pressure	5.0	0.5 (heat)

Source: Falkner and Slade, 2009.

Simplified block diagram

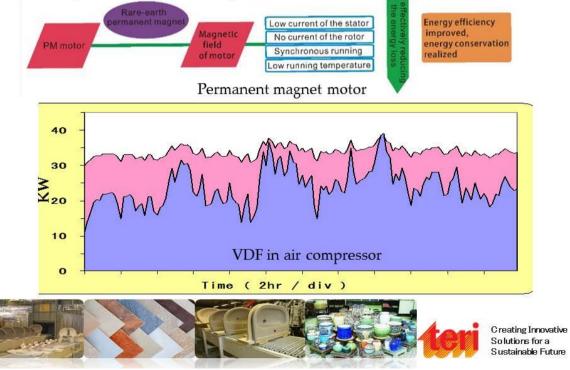
Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Rotary Compressors

- Compact size and complete package
- Economic first cost
- Vibration-free operation does not require special foundation
- Use of Variable frequency
 Part-load capacity control systems can match system demand drives for screw air
- Suitable for v**GQMP**F**CSSA**^f**S** with improved performance at part load)
- Routine maintenance includes lubricant and filter

Membrane-type dryers

- Low installation cost
- No electrical consumption
- Can be installed outdoors
- Can be used in hazardous atmospheres
- No moving parts



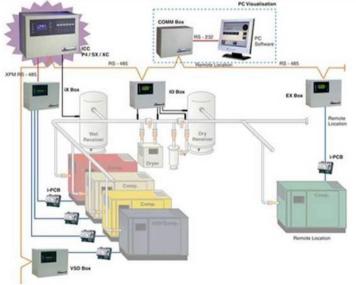
Ring loop air distribution piping

- Balanced air pressure in the plant
- Reduction in pressure loss
- · Avoid underground air piping in the plant
- Tapping should always be taken from the top of the main header line
- Drainage points should be provided at the bottom of each tapping
- Automatic drain valve should be installed at the receiver for regular water drain from the tank
- Timer frequency should be changed as per the season, more frequent draining in the rainy season

VDF enabled Permanent motor driven compressed air system

Air guns, spray guns/nozzles

Use of small diameter air guns, spray guns/nozzles


Arresting air leakages in air distribution system

- **u** Use of crimped joints instead of clip joints
- **u** Use of quick release coupling (QRC)

C reating Innovative So lutions for a S ustainable Future

Compressed air management system

- Precise pressure regulation reduces the average system pressure output.
- Networked capacity control coordinates production among multiple compressors for maximum efficiency.
- Leak loss reduction is a byproduct of a lower average system pressure.
- Automated load scheduling can shut down or offload compressors when plant demand is lower.
- Proper intercooler control ensures better compressor efficiency.

Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Seamless piping system

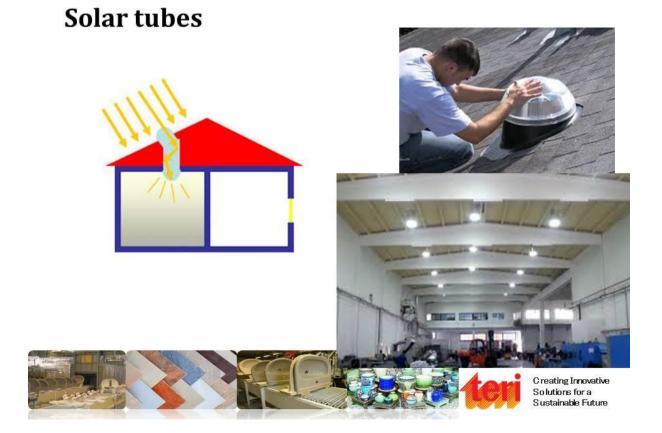
- Less fictional losses .
- Lower head loss .
- Less changes of leaks at the joints
- Higher life as compared to MS line

Renewable energy options

Capacity Building Workshop of Local Service Providers (LSPs) on Energy efficient and Renewable Energy (EE/ RE) Technologies

Solar roof top

Nature has blessed with abundant lighting energy



Do you really need Solar PV for lighting ???

Energy Efficient Lighting system

Thank you

"The law of win/win says: Let's not do in your way or my way, let's do it the best way" -Greg Anderson

